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Abstract

Admixture mass transfer is studied in geometrically complex systems. The method is proposed for finding an exact

solution of initial-boundary value problem of diffusion in bodies with two-phase periodical structure. It is based on

application of integral transformations with respect to space variables in contacting areas. The behaviour of mass trans-

fer processes in such systems is investigated. The relation between problems of mass transfer in horizontally periodical

structure and heterodiffusion by two ways is found.
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1. Introduction

The problem of describing and analyzing diffusion

process in bodies with complex internal structure arises

frequently at solving practical tasks. When body mate-

rial is fine-dispersed and we can assume that in every

arbitrarily chosen small body region there are always

its all structural elements then we can use continual ap-

proaches of rational mechanics [1] or nonequilibrium

thermodynamics [2] for describing processes of admix-

ture transport. With that we regard that particles of

the same chemical kind occur locally in physically differ-

ent states distinguishing, in particular, by their diffusion

coefficients. Then admixture transport comes about by

several ways (their number corresponds quantity of

physically different states). And it is accompanied by
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particles intertransitions from one migration way into

the others.

At the same time exact solutions of concrete contact

initial-boundary value problems of transfer processes for

sectionally homogeneous (in particular, space regular)

systems [3] are of interest. Such medium can consists

of contacting homogeneous subsystems, which exchange

by substance. Regular structures, which elements have

different diffusive properties, are considered at investiga-

tion of mass transfer in polycrystals along grain bound-

aries and dislocations [4,5] or in porous media, for

example soils, consisting from monocrystals and canals

of particles quick transport [6–8].

Notice that finding analytical solutions of contact ini-

tial-boundary value problems on basis of classical meth-

ods of mathematical physics gives rise to some

difficulties. So it is proposed an original method for con-

structing exact solutions of initial-boundary value prob-

lems of diffusion in bodies with regular structure on

basis of application of integral transformations. Exact
ed.
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analytical solutions of such problems give an opportu-

nity to analyze bound of applicability of known solu-

tions of the problems in bodies with a solitary

inclusion [4,5] and to perform boundary transitions to

continual models of heterodiffusion by way for estima-

tion of diffusion coefficients.
2. Subject of inquiry and problem formulation

Consider a body occupying a layer of thickness x0
and composing periodically disposed areas of two types.

Surfaces bounded these areas are perpendicular to the

layer boundaries (see Fig. 1a). Axis Ox is perpendicular

to body boundaries, Oy is perpendicular to surfaces of

composing areas. We denominate such structure as hor-

izontally regular or horizontally periodical one. Assume

that areas with diffusion coefficient D1 have width 2L

and width of areas with coefficient D2 is 2l. Such struc-

ture has a family of symmetry planes (y = ±n(L + l),

n = 0,1,2, . . .) which bisect neighbour contacting areas.

Therefore we can separate out a body element, on verti-

cal boundaries of which mass fluxes equal zero in the

direction being parallel to the layer surfaces (in the

direction Oy-axis, see Fig. 1b).

Admixture concentration c1(x,y, t) in the area

X1 = ]0;x0[ · ]0;L[ is determined from the equation

oc1
ot

¼ D1

o2c1
ox2

þ o2c1
oy2

� �
; x; y 2 X1: ð1Þ

Concentration of admixture particles c2(x,y, t) in the

area X2 = ]0;x0[ · ]L;L + l[ satisfies the following

equation:

oc2
ot

¼ D2

o2c2
ox2

þ o2c2
oy2

� �
; x; y 2 X2: ð2Þ

Assume zero initial conditions

c1ðx; y; tÞjt¼0 ¼ c2ðx; y; tÞjt¼0 ¼ 0: ð3Þ
x
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Fig. 1. Horizontally periodical body structure (
For t > 0 constant values of concentrations are sup-

ported on the layer boundary x = 0 and they equal zero

on the surface x = x0:

c1ðx; y; tÞjx¼0 ¼ cð1Þ0 � constant;

c2ðx; y; tÞjx¼0 ¼ cð2Þ0 � constant;

c1ðx; y; tÞjx¼x0
¼ c2ðx; y; tÞjx¼x0

¼ 0; ð4Þ

and admixture flaxes equal zero on the lateral surfaces of

the separated element y = 0, y = L + l, namely

oc1ðx; y; tÞ
oy

����
y¼0

¼ 0;
oc2ðx; y; tÞ

oy

����
y¼Lþl

¼ 0: ð5Þ

On the contact surface y = L we impose conditions of

equalities of both chemical potentials and mass fluxes:

l1ðx; y; tÞjy¼L ¼ l2ðx; y; tÞjy¼L;

q1d1

ol1ðx; y; tÞ
oy

����
y¼L

¼ q2d2

ol2ðx; y; tÞ
oy

����
y¼L

;
ð6Þ

where li(x,y, t) is a chemical potential in area Xi, qi is a
density of area Xi, di is a kinetic coefficient, i = 1,2.

Let admit linear dependence of chemical potential on

concentration [9]

l1ðx; y; tÞ ¼ l0 � Að1� c1c1ðx; y; tÞÞ;
l2ðx; y; tÞ ¼ l0 � Að1� c2c2ðx; y; tÞÞ;

where l0 is a chemical potential value for clean sub-

stance in the state specified by values of absolute temper-

ature T and pressure P; A = RT/M is a coefficient when

R is absolute gas constant and M is an atomic weight, ci
is an activity factor. Then we obtain the conditions of

nonideal contact for concentrations in the form

k1c1ðx; y; tÞjy¼L ¼ k2c2ðx; y; tÞjy¼L;

q1D1

oc1ðx; y; tÞ
oy

����
y¼L

¼ q2D2

oc2ðx; y; tÞ
oy

����
y¼L

;
ð7Þ

where k1 and k2 are coefficients of concentrating depen-

dence of chemical potentials in the areas X1 and X2

respectively.
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a) and separated element of the body (b).
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3. Construction of analytical solution

Find the solution of contact initial-boundary value

problem of diffusion (1)–(5) and (7) by integral transfor-

mations over space variables. Apply finite Fourier sine

transform with respect to variable x (x ! xn = np/x0,
n = 1,2, . . .; ciðx; y; tÞ ! �ciðn; y; tÞ, i = 1,2) [10]

�ciðn; y; tÞ ¼
Z x0

0

ciðx; y; tÞ sinðxnxÞdx;

ciðx; y; tÞ ¼
2

x0

X1
n¼1

�ciðn; y; tÞ sinðxnxÞ

to the problem (1)–(5) and (7). Then it takes the form

o�c1
ot

¼ D1

o2�c1
oy2

� D1x2n�c1 þ D1c
ð1Þ
0 xn; y 2 X1 ¼�0; L½; ð8Þ

o�c2
ot

¼ D2

o
2�c2
oy2

� D2x2n�c2 þ D2c
ð2Þ
0 xn; y 2 X2 ¼�L; Lþ l½;

ð9Þ

�c1jt¼0 ¼ �c2jt¼0 ¼ 0;
o�c1
oy

����
y¼0

¼ 0;
o�c2
oy

����
y¼Lþl

¼ 0; ð10Þ

k1�c1jy¼L ¼ k2�c2jy¼L; q1D1

o�c1
oy

����
y¼L

¼ q2D2

o�c2
oy

����
y¼L

: ð11Þ

Perform an integral transformation with respect to

variable y apart in area X1 and X2. For applying Fourier

transformation it is necessary to know values of corre-

sponding functions on boundaries of a transformation

region [10]. At y = 0 and y = L + l the condition (10) de-

fines functions o�c1=oy on the boundary of area X1 and

o�c2=oy on the boundary X2. Values o�ci=oy are unknown

on another surfaces of areas X1 and X2 (contact surface).

Define them taking into account the second contact con-

dition (11). It means that mass fluxes are equal on the

contact boundary y = L and they equal some time func-

tion g(t), i.e.

q1D1

o�c1
oy

����
y¼L

¼ q2D2

o�c2
oy

����
y¼L

¼ gðn; L; tÞ � gðtÞ: ð12Þ

Then we can carry out finite Fourier cosine transfor-

mation of the problem (8), (10) and (12) in the area X1

(y ! yk; �c1ðn; y; tÞ ! ~c1ðn; k; tÞ):

~c1ðn; k; tÞ ¼
Z L

0

�c1ðn; y; tÞ cosðykyÞdy; ð13Þ

where yk = kp/L, k = 0,1,2, . . .. Notice that in the case of

boundary conditions established for sought functions we

use Fourier sine transformation [10] in contacting re-

gions and define functions of concentration on interface

considering the first contact condition.

Find integral transformation from o2�c1=oy2 first.

Twice integrating by parts we obtain
Z L

0

o2�c1
oy2

cosðykyÞdy ¼
o�c1
oy

cosðykyÞ
����L
0

þ yk�c1 sinðykyÞj
L
0

� y2k

Z L

0

�c1 cosðykyÞdy:

Allowing for the conditions on the boundaries of area

X1 (10) and (12) we haveZ L

0

o2�c1
oy2

cosðykyÞdy ¼
ð�1Þk

q1D1

gðtÞ � y2k~c1: ð14Þ

Remark that in this case cosine Fourier inversion is [10]

�c1ðn; y; tÞ ¼
1

L
~c1ðn; 0; tÞ þ

2

L

X1
k¼1

~c1ðn; k; tÞ cosðykyÞ: ð15Þ

After application finite Fourier cosine transforma-

tion with account formula (14), the initial-boundary

value problem (8), (10) and (12) in transforms is reduced

to an ordinary differential equation:

d~c1
dt

¼ �D1ðx2n þ y2kÞ~c1 þ D1akc
ð1Þ
0 xn þ

ð�1Þk

q1

gðtÞ ð16Þ

under initial condition

~c1ðtÞjt¼0 ¼ 0; ð17Þ

where ak ¼
L; k ¼ 0;
0; k ¼ 1; 2; . . .

�
We find a complete integral of Eq. (16) as follows

[11]:

~c1ðtÞ ¼ e
�
R t

0
D1ðx2nþy2k Þ dt

00
Z t

0

akc
ð1Þ
0 xnD1 þ

ð�1Þk

q1

gðt0Þ
( )"

� e
�
R t0

0
D1ðx2nþy2k Þ dt

00
dt0 þ K1

#
;

where K1 is an unknown constant. So long asR t
0
D1ðx2n þ y2kÞdt0 ¼ D1ðx2n þ y2kÞt then

~c1ðtÞ ¼ e�D1ðx2nþy2k Þt
Z t

0

D1akc
ð1Þ
0 xn þ

ð�1Þk

q1

gðt0Þ
( )"

� eD1ðx2nþy2k Þt
0
dt0 þ K1

#
:

Satisfying initial condition (17) we obtain K1 = 0. And

the solution of problem (16) and (17) is

~c1ðtÞ ¼ e�D1ðx2nþy2k Þt
Z t

0

"
D1akc

ð1Þ
0 xn

þð�1Þk

q1

gðt0Þ
#
eD1ðx2nþy2k Þt

0
dt0: ð18Þ

Let us consider initial-boundary value problem (9),

(10) and (12) in the area X2. Introduce finite Fourier

cosine transformation taken over variable y like that
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~c2ðn;m; tÞ ¼
Z Lþl

L
�c2ðn; y; tÞ cosðymðy � LÞÞdy; ð19Þ

where ym = mp/l. Search out a formular for inverse

transformation to (19). In order to do it we change var-

iable under the integral: r = y � L. Then we obtain

~c2ðn;m; tÞ ¼
Z l

0

�c2ðn; r þ L; tÞ cosðymrÞdr:

For such integral transformation a formula of inverse

transition is known [10]:

�c2ðn; r þ L; tÞ ¼ 1

l
~c2ðn; 0; tÞ þ

2

l

X1
m¼1

~c2ðn;m; tÞ cosðymrÞ:

Reventing to the variable y we obtain an expression for

inverse transformation to (19)

�c2ðn; y; tÞ ¼
1

l
~c2ðn; 0; tÞ þ

2

l

X1
m¼1

~c2ðn;m; tÞ cosðymðy � LÞÞ:

ð20Þ

Now we can perform integral transformation (19)

from o
2�c2=oy2 by analogy (14):Z Lþl

L

o2�c2
oy2

cosðymðy�LÞÞdy

¼ o�c2
oy

cosðymðy�LÞÞ
����Lþl

L

þ ym

Z Lþl

L

o�c2
oy

sinðymðy�LÞÞdy

¼ o�c2
oy

cosðymðy�LÞÞ
����Lþl

L

þ ym�c2 sinðymðy�LÞÞjLþl
L

� y2m

Z Lþl

L
�cm cosðymðy�LÞÞdy:

Allowing for the value o�c2=oy on the boundary of X1

and X2 areas contact y = L and on the lateral surface

of the separated element y = L + l we obtainZ Lþl

L

o2�c2
oy2

cosðymðy � LÞÞdy ¼ ð�1Þm

q2D2

gðtÞ � y2m~c2: ð21Þ

Then initial-boundary value problem (9), (10) and (12)

takes the form

d~c2
dt

¼ �D2ðx2n þ y2mÞ~c2 þ D2amc
ð2Þ
0 xn �

ð�1Þm

q2

gðtÞ; ð22Þ

~c2ðtÞjt¼0 ¼ 0; ð23Þ

where am ¼ l; m ¼ 0;
0; m ¼ 1; 2; . . .

�
. The complete integral of

ordinary differential equation (22) is

~c2ðtÞ ¼ e
�
R t

0
D2ðx2nþy2k Þdt

00
Z t

0

(
amc

ð2Þ
0 xnD2

"

þð�1Þmþ1

q2

gðt0Þ
)
e
�
R t0

0
D2ðx2nþy2k Þdt

00
dt0 þ K2

�
;

here K2 is an unknown constant. Integrating under the

exponents we have

~c2ðtÞ ¼ e�D2ðx2nþy2mÞt
Z t

0

�
D2amc

ð2Þ
0 xn

�
�ð�1Þm

q2

gðt0Þ
�
eD2ðx2nþy2mÞt0 dt0 þ K2

�
:

The initial condition (23) implies that K2 = 0. Then we

obtain the solution of problem (22) and (23) in the form

~c2ðtÞ ¼ e�D2ðx2nþy2mÞt
Z t

0

�
D2amc

ð2Þ
0 xn

�ð�1Þm

q2

gðt0Þ
�
eD2ðx2nþy2mÞt0 dt0: ð24Þ

Function g(t) is unknown in the expressions (18) and

(24). Find it from the first contact condition of concen-

tration equality on interface (11). In order to do it we

perform inverse integral cosine transformation of con-

centration in both area X1 by the formula (15) and area

X2 by (20). Then we obtain

�c1ðn; y; tÞ ¼
Z t

0

 
D1c

ð1Þ
0 xn þ

gðt0Þ
q1L

� �
:e�D1x2nðt�t0Þ

þ 2gðt0Þ
q1L

X1
k¼1

ð�1Þk cosðykyÞe�D1ðx2nþy2k Þðt�t0Þ

!
dt0;

ð25Þ

�c2ðn; y; tÞ ¼
Z t

0

D2c
ð2Þ
0 xn �

gðt0Þ
q2l

� ��
e�D2x2nðt�t0Þ

� 2gðt0Þ
q2l

X1
m¼1

ð�1Þm cosðymðy � LÞÞ

� e�D2ðx2nþy2mÞðt�t0Þ
�
dt0: ð26Þ

Substitute the value y = L in the expressions (25) and

(26) and equate them multiplying functions �ci by corre-

sponding coefficients of concentrating dependence of

chemical potential ki. As a result we obtain the following

equation:Z t

0

"
k1c

ð1Þ
0 xnD1e

�D1x2nðt�t0Þ þ k1
gðt0Þ
q1L

(
e�D1x2nðt�t0Þ

þ2
X1
k¼1

e�D1ðx2nþy2k Þðt�t0Þ

)#
dt0

¼
Z t

0

"
k2c

ð2Þ
0 xnD2e

�D2x2nðt�t0 Þ � k2
gðt0Þ
q2l

(
e�D2x2nðt�t0 Þ

�2
X1
m¼1

e�D2ðx2nþy2mÞðt�t0 Þ

)#
dt0: ð27Þ

In order that a define integral of a nonperiodical func-

tion equals zero, it is enough that integral function
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equals zero. Then we obtain the equation for determina-

tion of unknown function g(t 0)

k1
gðt0Þ
Lq1

e�D1x2nðt�t0Þ þ 2
X1
k¼1

e�D1ðx2nþy2k Þðt�t0Þ

( )

þ k2
gðt0Þ
lq2

e�D2x2nðt�t0 Þ � 2
X1
m¼1

e�D2ðx2nþy2mÞðt�t0Þ

( )
¼ k2c

ð2Þ
0 xnD2e

�D2x2nðt�t0Þ � k1c
ð1Þ
0 xnD1e

�D1x2nðt�t0Þ:

Whence we find

gðt0Þ ¼
xn k2c

ð2Þ
0 D2e

�D2x2nðt�t0Þ � k1c
ð1Þ
0 D1e

�D1x2nðt�t0Þ
n o
k1
Lq1

e�D1x2nðt�t0Þ þ k2
lq2

e�D2x2nðt�t0Þ þ 2Snðt � t0Þ
;

ð28Þ

where

Snðt � t0Þ ¼
X1
j¼1

k1
Lq1

e�D1ðx2nþðjp=LÞ2Þðt�t0 Þ
�

þð�1Þjk2
lq2

e�D2ðx2nþðjp=lÞ2Þðt�t0Þ
�
:

Remark the integral equation (27) has nonunique

solution so far as it exists such functions F(t 0)5 0 thatR t
0
F ðt0Þdt0 ¼ 0. At the same time the original problem

solution is unique independently of choice of solving

integral equation manner since function g(t 0) in the solu-

tions c1 and c2 appears only under the integral of vari-

able t 0.

For obtaining the final solution of contact initial-

boundary value problem (1)–(5) and (7) it remains to

make inverse Fourier sine transformation of the expres-

sions (25) and (26). Then we find

c1ðx; y; tÞ ¼ cð1Þ0 1� x
x0

� �
� 2

x0

X1
n¼1

e�D1x2nt sinðxnxÞ

� cð1Þ0

xn
D1 �

1

q1L

Z t

0

gðt0ÞeD1x2nt
0
dt0

(

þ 2

q1L

X1
k¼1

ð�1Þke�D1y2k t

� cosðykyÞ
Z t

0

gðt0ÞeD1ðx2nþy2k Þt
0
dt0
)
; ð29Þ

c2ðx; y; tÞ ¼ cð2Þ0 1� x
x0

� �
� 2

x0

X1
n¼1

e�D2x2nt sinðxnxÞ

� cð2Þ0

xn
D2 �

1

q2l

Z t

0

gðt0ÞeD2x2nt
0
dt0

(

þ 2

q2l

X1
m¼1

ð�1Þme�D2y2mt

� cosðymyÞ
Z t

0

gðt0ÞeD2ðx2nþy2mÞt0 dt0
)
; ð30Þ

where function g(t 0) is specified by the formula (28).
4. Relation between problems of diffusion in horizontally

regular structure and heterodiffusion by two ways.

Dimensionless form

Average the functions of admixture concentration

c1(x,y, t) and c2(x,y, t) over all width of the separated

body element [0;L + l]:

ĉiðx; tÞ ¼
1

Lþ l

Z Lþl

0

ciðx; y; tÞdy; i ¼ 1; 2: ð31Þ

Then such averaged functions have to satisfy the follow-

ing equations:

oĉ1
ot

¼ D1

o2ĉ1
ox2

þ D1

Lþ l
oc1
oy

����
y¼L

;

oĉ2
ot

¼ D2

o
2ĉ2
ox2

þ D2

Lþ l
oc2
oy

����
y¼L

:

If mass fluxes on the contact boundary may be repre-

sented by chemical potentials as

q1D1

oc1
oy

����
y¼L

¼ h2Dl2 � h1Dl1jy¼L;

q2D2

oc2
oy

����
y¼L

¼ h1Dl1 � h2Dl2jy¼L;

here h1, h2 (h1 5 h2) are coefficients of correlation be-

tween fluxes and chemical potentials and Dli = li � l0,

then the averaged functions (31) satisfy the equations

oĉ1
ot

¼ D1

o2ĉ1
ox2

þ 1

q1ðLþ lÞ h2Dl2 � h1Dl1ð Þjy¼L;

oĉ2
ot

¼ D2

o2ĉ2
ox2

� 1

q2ðLþ lÞ h2Dl2 � h1Dl1ð Þjy¼L:

ð32Þ

So long as Dlijy=L = kicijy=L, the set of Eqs. (32) can be

written in the form

oĉ1
ot

¼ D1

o2ĉ1
ox2

þ 1

q1ðLþ lÞ k2h2c2 � k1h1c1ð Þjy¼L;

oĉ2
ot

¼ D2

o2ĉ2
ox2

� 1

q2ðLþ lÞ k2h2c2 � k1h1c1ð Þjy¼L:

If the condition 1
Lþl ciðx; L; tÞ � ĉiðx; tÞ takes place then

we obtain a coupled set of differential equations of

admixture heterodiffusion by two ways [1,2,12]

q1

oĉ1
ot

¼ q1D1

o2ĉ1
ox2

� �k1ĉ1 þ �k2ĉ2;

q2

oĉ2
ot

¼ q2D2

o2ĉ2
ox2

� �k1ĉ1 þ �k2ĉ2;

ð33Þ

where �ki ¼ hiki (i = 1,2) are coefficients of intensity of

particle transition between different diffusion ways.

Thus, subject to the equality of admixture fluxes and

linear combinations of chemical potentials on a contact

boundary by means of averaging concentrations over
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Fig. 2. Diffusion in a polycrystal along grain boundary.
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body width we obtain immediately a set of equations for

heterodiffusion by two ways taking into account particle

transitions from one migration way into another.

Now we can introduce a natural dimensionless form

for such a problem [12]:

s ¼ �k2t; n ¼ ð�k2=D1Þ1=2x: ð34Þ

Take into consideration the dimensionless space var-

iable g = (k2/D1)
1/2y. Then the contact initial boundary

value problem (1)–(5) and (7) can be presented in a

dimensionless form:

oc1
os

¼ o2c1
on2

þ o2c1
og2

; n; g 2 x1 ¼�0; n0½��0;K½; ð35Þ

oc2
os

¼ d
o2c2
on2

þ o2c2
og2

� �
; n; g 2 x2 ¼�0; n0½��K;K þ k½;

ð36Þ

c1ðn; g; sÞjs¼0 ¼ c2ðn; g; sÞjs¼0 ¼ 0;

c1ðn; g; sÞjn¼0 ¼ cð1Þ0 ; c2ðn; g; sÞjn¼0 ¼ cð2Þ0 ;

c1ðn; g; sÞjn¼n0
¼ c2ðn; g; sÞjn¼n0

¼ 0;

oc1ðn; g; sÞ
og

����
g¼0

¼ oc2ðn; g; sÞ
og

����
g¼Kþk

¼ 0;

ð37Þ

k1c1jg¼K ¼ k2c2jg¼K; q1

oc1
og

����
g¼K

¼ q2d
oc2
og

����
g¼K

: ð38Þ

Here d = D2/D1; n0 ¼ ð�k2=D1Þ1=2x0, K ¼ ð�k2=D1Þ1=2L,
k ¼ ð�k2=D1Þ1=2l.
5. Fisher problem as a particular case of diffusion problem

in horizontally periodical structure

If in the relationships (1)–(5) and (7) we tend the

width of area X2 to infinity l! 1 (L 5 0) then we ob-

tain Fisher problem [4,5] for a layer modelling diffusion

in a polycrystal along grain boundary. That is admixture

diffusion in a semi-infinite solid in which a thin plate was
put into so as its plane is perpendicular to the body sur-

face (see Fig. 2). Assume that concentration of diffuser

conserves its constant values on a free sample surface

and diffusion coefficient D1 in a plate (that conforms

to a grain boundary) is much greater then D2 character-

izing mass transfer in the remaining body [4].

In the formulae (29), (30) pass to the limit at l! 1
and obtain exact analytical solution of Fisher problem

for a layer:

lim
l!1

c1ðx; y; tÞ

¼ cð1Þ0 1� x
x0

� �
� 2

x0

X1
n¼1

sinðxnxÞe�D1x2nt

� cð1Þ0

xn
D1 �

1

Lq1

Z t

0

ĝðt0ÞeD1x2nt
0
dt0

 

þ 2

q1L

X1
k¼1

ð�1Þke�D1y2k t cosðykyÞ
Z t

0

ĝðt0ÞeD1ðx2nþy2k Þt
0
dt0
!
;

ð39Þ

lim
l!1

c2ðx; y; tÞ ¼ cð2Þ0 1� x
x0

� 2

x0

X1
n¼1

1

xn
sinðxnxÞe�D2x2nt

" #
;

ð40Þ
where

ĝðt0Þ ¼ cð1Þ0 D1Lq1xn
1þ 2Ŝn

� k2c
ð2Þ
0 D2

k1c
ð1Þ
0 D1

exp �ðD2 � D1Þx2nðt � t0Þ
� �

� 1

" #
;

bSn ¼
X1
j¼1

e�D1 jp=Lð Þ2ðt�t0Þ:

Note that the expression (40) for admixture concen-

tration in area X2 is identical to solution of one-dimen-

sional diffusion problem for a layer with diffusion

coefficient D2 and initial and boundary conditions (3)

and (4) that corresponds the results mentioned in [4].
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6. Numerical analysis of admixture concentration

behaviour in a body with horizontally regular structure

Illustration of admixture concentration distributions

in a layer with horizontally periodical structure com-

puted by formulae (29), (30) is presented in Figs. 3–10.

Numerical calculations have been done in the dimen-

sionless variables s, n, g introduced by (34). The problem

coefficients have been taken n0 = 10; K = 1, k = 0.1,

d = D2/D1 = 0.01, q2/q1 = 1.5, cð1Þ0 =cð2Þ0 ¼ 0:1. Distribu-

tions of admixture concentration along On-axis in differ-

ent time moments s=1; 5; 10; 20; 100 (curves 1–5

correspondingly) are shown in Fig. 3 in the middle of

area X1, i.e. at g = 0.5, and Fig. 4 at g = 1.05 (middle

of area X2) for �k1=�k2 ¼ 10. Fig. 5 (g = 0.5) and Fig. 6

(g = 1.05) illustrate behaviour of concentration function

for different values of ratio �k1=�k2 ¼ 100; 10; 2; 0.5; 0.1

(curves 1–5) in dimensionless moment s = 10. Fig. 7

(g = 0.5) and Fig. 8 (g = 1.05) show cðn; g; sÞ=cð2Þ0 in

dependence on ratio of diffusion coefficients d = 0.01;

0.1; 0.5 (curves 1–3) at �k1=�k2 ¼ 10, s = 10.
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Fig. 3. Distributions of admixture concentration along depth in

the middle of area X1.
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Fig. 4. Distributions of admixture concentration along depth in
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Fig. 6. Admixture concentration for different values of ratio of

particle intertransitions intensity coefficients k1/k2 in the middle

of area X2.
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Fig. 7. Dependence of admixture concentration on ratio of

diffusion coefficients d = D2/D1 in the middle of area X1.
Graphs of admixture concentration along Og-axis,
i.e. on width of the separated body element, are demon-

strated in Figs. 9 and 10. Fig. 9 illustrates concentration
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diffusion coefficients d in the middle of area X2.

O. Chernukha / International Journal of Heat and Mass Transfer 48 (2005) 2290–2298 2297
in different times s = 1; 5; 10 (curves 1–3) at depth n = 1

for d = 0.01, �k1=�k2 ¼ 10. Concentration is shown in Fig.

10 for different values of ratio of diffusion coefficients

d = 0.1; 0.01 (curves 1 and 2). Here full lines mark the

function cðn; g; sÞ=cð1Þ0 under �k1=�k2 ¼ 10 and dashed lines

identify them under �k1=�k2 ¼ 0:1 at s = 1.

Let us note that behaviour of admixture concentra-

tion function along layer depth is substantially different

in areas X1 and X2. So concentration distributions in re-

gion X1 with quick diffusion coefficient are similar to

ones in a homogeneous layer (see Figs. 3, 5 and 7). At

the same time in area X2 with slow diffusion coefficient

there is subsurface increase of concentration. Such situ-

ation is characteristic of heterodiffusion by two ways

(see Figs. 4, 6, and 8). But in this case it is possible to

occur the second local maximum at the body depth for

both small times and much more severe transition

admixture particles from region with quick diffusion

coefficient into area with slow one (see Fig. 6, curves 1

and 2).
7. Mass fluxes in a layer with horizontally periodical

structure

The obtained analytical expressions for admixture

concentrations give an opportunity to find such impor-

tant characteristics of mass transfer as mass fluxes of

admixture particles through per unit of surface area

x = x*. They are deduced by the formula

J ðiÞ
� ðtÞ ¼ �Di

ociðx; y; tÞ
ox

����
x¼x�

;

ðx; yÞ 2 Xi; i ¼ 1; 2; x� 2 ½0; x0�: ð41Þ

Substituting the corresponding expressions for admix-

ture concentrations (29), (30) into (41) we obtain the

following formulae for mass fluxes through per unit of

surface area x = x* in area X1

J ð1Þ
� ðtÞ ¼ D1

x0

�
Cð1Þ

0 þ 2
X1
n¼1

e�D1x2nt cosðxnx�Þ cð1Þ0 D1 �
xn
q1L

�
�
Z t

0

gðt0ÞeD1x2nt
0
dt0 þ 2xn

q1L

X1
k¼1

ð�1Þke�D1y2k t cosðykyÞ

�
Z t

0

gðt0ÞeD1ðx2nþy2k Þt
0
dt0
��

; ð42Þ

in area X2

J ð2Þ
� ðtÞ ¼ D2

x0

�
cð2Þ0 þ 2

X1
n¼1

e�D2x2nt cosðxnx�Þ cð2Þ0 D2 �
xn
q2l

�
�
Z t

0

gðt0ÞeD2x2nt
0
dt0 þ 2xn

q2l

X1
m¼1

ð�1Þme�D2y2mt cosðymyÞ

�
Z t

0

gðt0ÞeD2ðx2nþy2mÞt0 dt0
��

: ð43Þ
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In particular, mass fluxes through the layer surface

x = x0 (x* = x0) take the form in area X1

J ð1Þ
0 ðtÞ ¼ D1

x0

�
cð1Þ0 þ 2

X1
n¼1

ð�1Þne�D1x2nt cð1Þ0 D1 �
xn
q1L

�
�
Z t

0

gðt0ÞeD1x2nt
0
dt0 þ 2xn

q1L

X1
k¼1

ð�1Þke�D1y2k t cosðykyÞ

�
Z t

0

gðt0ÞeD1ðx2nþy2k Þt
0
dt0
��

;

in area X2

J ð2Þ
0 ðtÞ¼D2

x0
cð2Þ0 þ2

X1
n¼1

ð�1Þne�D2x2nt cð2Þ0 D2�
xn
q2l

�"

�
Z t

0

gðt0ÞeD2x2nt
0
dt0 þ2xn

q2l

X1
m¼1

ð�1Þme�D2y2mt cosðymyÞ

�
Z t

0

gðt0ÞeD2ðx2nþy2mÞt0 dt0
�#

:

In the same way we can find mass fluxes through any

vertical surface y = y*.
8. Conclusion

In this work for obtaining exact analytical solutions

of contact initial-boundary value problems of mass

transfer it was proposed new method based on applica-

tion of integral transformations apart in contacting

areas. Determination of analytical expressions for

admixture concentration allows to find mass fluxes

through per unit of the given surface area. Obtaining

the exact solution of such problem gives also an oppor-

tunity to find exact solutions for particular practically

important Fisher problem.

The conditions have been determined when relation

between diffusion problem in a body with horizontally

periodical structure and problem of one-dimensional

heterodiffusion by two ways exists. It gives a possibility

to introduce natural dimensionless form for a problem

of mass transfer in horizontally regular structures too.

Remark that change to a heterodiffusion problem exists

only under conditions of nonideal mass contact. If ideal

contact conditions realize then we obtain change to the
model of ‘‘noninteracting fluxes’’, i.e. mass transfer by

two ways not accompanied by particle intertransitions

from one migration way into another.

Finally, note that the proposed method for construct-

ing exact solution of contact initial-boundary value

problems does not use condition on sizes of contacting

areas. So it can be suitable both for bodies with compa-

rable sizes of contacting regions and in the cases when

one area width is much greater (or smaller) then

another.
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